

Grower of LiveRoof® Systems

Extensive Vegetated Roofs

.

Beautiful and practical additions to the Urban Landscape

Kees Govers LiveRoof Ontario Inc Mt Brydges, ON

Presentation Overview

- The roof in sustainable building
- Extensive green roof types
- How good green roofs are created
- Case Studies
 - Meadow style extensive green roofs
 - Sloped green roofs
 - Publicly accessible green roofs
- Summary

Sustainable Building How green roofs fit in

- Sustainable Site
- Energy Use
- Environmentally preferable materials
- Enhanced indoor environmental quality
- Optimize operational and maintenance practices
- Water conservation and protection

Rooftop Temperature

Enhanced indoor environmental quality

- Optimize aesthetics of visible roofs
 - Green improves people's well being and performance

Water conservation and protection

- Capture storm water
 - Up to 30 mm captured in 4" deep medium
 - A 4" green roof reduces annual run-off by 60-70%
- Detain storm water run-off
 - Can delay water run-off by several hours depending on rain intensity
 - More effective than controlled flow drains

Water conservation and protection

Run-off Delay

Run-off Reduction

Water conservation and protection

Storm Water Quality

How do green roofs perform

- Plants utilise solar radiation
 - Create carbohydrates and O₂ from H₂O and CO₂
 - Respiration turns carbohydrates and O₂ into growth
 - Respiration and photosynthesis create need for transpiration
 - Transpiration draws H_2O and O_2 from soil along with nutrients
 - Growing medium absorbs and holds $\rm H_2O$ and $\rm O_2$ until transpired
 - Filtration and buffering takes place in the process

Extensive Green Roof Systems

- Three critical factors
 - Drainage
 - Growing medium
 - Plants

Nothing else matters

- A stressed green roof doesn't function properly!
- A dead green roof doesn't function !!!!

Extensive Green Roof Systems

- Built in place systems
- Pre-grown blankets
- Conventional trays
- Hybrid modules

Typical built in place

Grand Rapids, MI 1 year old

Erosion control matting Chicago, IL

Grand Rapids, MI

Toronto, ON

Blanket Systems

Blanket Systems

Blanket Systems

A mature blanket system

Conventional Trays

Conventional modules

Hybrid modules

Pre-vegetated Interconnected

Efficient Handling

Hybrid modules

Hybrid modules

How good green roofs are created

- Specifications (if you are a designer)
 - Choose an appropriate roofing system
 - Appropriate for the building
 - Compatible with a green roof
 - Choose the green roof system type
 - Specify a named product.
 - Decide whether to allow alternates
 - Check out the chosen product
 - At installation time
 - 1 year old
 - 4 years old
 - If alternates are proposed on the RFI, check them out before approving. Give yourself at least two weeks
 - Don't mix and match specifications

How good green roofs are created

- Specifications (if you are an installer)
 - Read the specifications and look at the drawings
 - Are you a certified installer for the product?
 - Can you become a certified installer?
 - Price the specified product
 - Price the design
 - Propose and price alternates if appropriate
 - Do not violate your licensing agreements

Roofing Design

- Always check your specifications with roofing system manufacturer and green roof manufacturer
- Conventional roofing assembly
 - Typical assembly on Steel Deck
 - Vapour barrier
 - Cover board
 - 2 layers of polyisocyanurate, seams off-set, screwed or glued to deck
 - Cover board glued to iso insulation
 - Membrane fully adhered to cover board
 - EFVM leak detection (optional)
 - Loose laid root barrier (compatible with EFVM if used)
 - Green roof system

Roofing Design

- Protected Membrane Assembly
 - Typical on a concrete deck
 - Modular green roof system
 - Fully adhered membrane system
 - Root barrier (optional location)
 - 2 layers of Extruded Polystyrene seams off set (lower layer with drainage channels)
 - Green roof system layers
 - Note: insulation layer has to have vapour diffusion space. No more than 35% can be sealed.

Drainage

- Good drainage is essential.
- No water holding in the drainage layer unless designed as a reservoir.
- No perched water table in the growing medium
- Leave space around drains
- Leave overflow space around perimeter
- Do not block drainage flow with
 - Irrigation lines
 - Pavers
 - Edging materials without drainage slots
 - Filter cloth
 - Layers of fabric

Drainage

Growing medium

- Proper growing medium is essential
 - As light weight as practical
 - Supports long term plant growth
 - Retains water
 - Has good aeration, even when saturated
 - Durable and stable
 - Low in organic matter
 - No unstable fillers such as vermiculite, horticultural foam
- conforms to FLL granulometric standards
 - Include a mandatory growing medium test in specifications
 - Agricultural Analytical Services Laboratory, Penn State University

Growing Medium

Growing medium

 Growing medium Test

PENN	STATE		(814)	863-0841 I	àx (814) 863-4540			
			Agricultural Analytical Services Labordony The Parasylvania State Increasity Uncreasity Earl: PA 16802 www.aasl.psu.edu					
	ANALYSIS FOR:		ADDITIONAL COPY TO:					
LAB ID	SAMPLE ID	SAMPLE TYPE	DATE SAMPLED	DATE RECEIVED	DATE COMPLETED			
SM03530		Multi-layer extensive		7/9/2010	7/27/2010			
Green Roof Media Analysis								

Green KOOI Media Analysis Results on dry weight basis unless specified otherwise

Analysis	Units	Result	FLL Guidelines for Multi Course Extensive Sites ¹
Particle Size Distribution (See accompanying report)			
≤ 0.05 mm (Fli reference value based on < 0.06 mm)	mass %	7.5	<u>≤</u> 15
Denisty Measurements			
Bulk Density (dry weight basis)	g/cm"	1.07	-
Bulk Density (dry weight basis)	lb/ft ³	67.05	-
Bulk Density (at max. water-holding capacity)	g/cm ³	1.55	-
Bulk Density (at max. water-holding capacity)	Ib/ft ³	97.06	_
Water/Air Measurements			
Moisture	mass %	11.5	-
Total Pore Volume ²	Vol. %	54.3	-
Maximum water-holding Capacity	Vol. %	49.4	35 - 65
Air-Filled Porosity (at max water-holding capacity)	Vol. %	4.9	<u>></u> 10
Water permeability (saturated hydraulic conductivity)	cm/s	0.01	0.001 - 0.12
Water permeability (saturated hydraulic conductivity)	in/min	0.31	0.024 - 2.83
pH and Salt Content			
pH (CaCl ₂)		7.4	6.0 - 8.5
Soluble salts (water, 1:10, m:v)	mmhos/cm	0.21	_
Soluble salts (water, 1:10, m:v)	g (KCl)/L	1.34	<u><</u> 3.5
Organic Measurements			
Organic matter content	mass %	5.8	- 2
Organic matter content	g/L	62.8	<u><</u> 65
Nutrients			e Ex
Phosphorus, P20, (CAL)	mg/L	24.7	<u><</u> 200 §
Potassium, K ₂ O (CAL)	mg/L	217.1	<u><</u> 700 - 3
Magnesium, Mg (CaCl ₂)	mg/L	301.5	<u>≤</u> 200
Nitrate + Ammonium (CaCl ₂)	mg/L	19.2	<u><</u> 80 👸

¹Forschungsgesellschaft Landschaftstentiwicklung Landschaftsbau (FLL). 2008. Guidelines for the Planning Execution and Uplacep of Green-Roof Sites ³Total pore volume determined using measured particle density instead of assumed particle density as specified in FLL.

Growing medium

Green Roof Media Particle Size Distribution

Particle Size Analysis		Sum of particles less than size specified				
Diameter -mm-	96		Diameter -mm-	Diameter -in-	Sieve size	% sum of particles
< 0.002	3.9	<	0.002	-	-	3.9
0.002-0.05	3.6	<	0.05	-	-	7.5
0.05-0.25	6.8	<	0.25	0.0098	60 mesh	14.3
0.25-1.0	14.3	<	1.0	0.0394	18 mesh	28.6
1.0-2.0	14.6	<	2.0	0.0787	10 mesh	43.2
2.0-3.2	16.6	<	3.2	0.125	1/8 inch	59.8
3.2-6.3	29.2	<	6.3	0.250	1/4 inch	89.0
6.3-9.5	11.0	<	9.5	0.375	3/8 inch	100.0
9.5-12.5	0.0	<	12.5	0.500	1/2 inch	100.0
> 12.5	0.0					

Granulometric Analysis

Green Roof Media FLL¹ Particle Size Distribution Graph for Multiple Course Extensive Systems

¹Forschungsgesellschaft Landschaftsenttwicklung Landschaftsbau (FLL). 2008. Guidelines for the Planning Execution and Upkeep of Green-Roof Sites

page 3

Growing medium

Growing medium

Growing medium

Too much organic matter Lovely lamb's quarters, pigweed and clover

Growing medium

Green roof design

Plants

Adaptive plants

Select plants according to

- Media depth
- Hardiness Zone
- Elevation and exposure of the roof
- Irrigation intent
- Potential ecological impact on surrounding vegetation in sensitive areas

Green Roof Plants

- Plant choices in Great Lakes Basin
 - Growing media depth: 2.5"
 - Shallowest practical growing medium depth
 - Hardy succulents (CAM)
 - Small flowering Allium
 - Ephemeral spring bulbs
 - May still need periodic irrigation
 - 10-18 psf depending on growing medium

Green Roof Plants

- Plant choices in Great Lakes Basin
 - Growing media depth: 4"
 - Best practical growing medium depth
 - Succulents and related plants (CAM)
 - Alliums
 - Ephemeral bulbs
 - A few drought tolerant grasses if irrigated
 - Some drought tolerant perennials if irrigated
 - Most efficient stormwater control on annual basis
 - 23-30 psf depending on growing medium

Green Roof Plants

- Plant choices in Great Lakes Basin
 - Growing media depth: 6"
 - Designer's Choice: 6" and up
 - Succulents, hardy perennials, sedges and grasses
 - Irrigation required if planted with more than succulents
 - 40-50 psf depending on growing medium and plants

Green roof design

- Other factors to consider
 - Irrigation Design
 - Irrigation for overhangs
 - South facing glass walls
 - Exposed vs ballasted perimeters
 - Roof access points
 - Air vents
 - Edge stress due to thermal bridging
 - Material handling safety

Irrigation design

- Sprinklers
 - Design for wind
 - Operate intelligently
- Drip Irrigation
 - Poorly suited to thin systems
 - Stripes
- Sub-irrigation
 - Can lead to waterlogging and poor drainage
 - Difficult to design and install properly

Overhangs

Overhanging roofs require irrigation

Glass Walls

Exposed vs Ballasted

Roof with Exposed Membrane

Roof without Exposed Membrane

Access Points

Access Points

Air vents

Edge Stress

Edge Stress

Material Handling Safety

Meadow Style green roofs

Toronto Transit Commission

- Eglinton West Station
 - Existing building opened in 1978
 - Active subway and bus station
 - TTC Pilot Project
 - First of potentially many green roofs on TTC facilities
- Similar projects:
 - Toronto Public Service Building
 - Victoria Park Station

Summer 2008

- Green Roof Design
 - System choice
 - Active subway station: installation to be fast
 - Very meticulous client
 - High profile: Instant green roof
 - Exposed: station open to the north
 - Allowable saturated weight: 23 psf
 - Pre-grown hybrid modular 3.5" deep

- Plant Choices:
 - System Depth: 3.5"
 - Mixture of 8 varieties of Sedums
 - Custom selection for site conditions
 - USDA Hardiness Zone 3 and 4 plants
 - Selection for visual impact
 - Matched plant selections to optimize long term visual appeal

The green roof in production 4 weeks prior to installation

The Blank Canvas

membrane replacedEFVM installedAsphalt flood coat applied

Transport to Site

Challenge # 1 How to get six 18 wheelers and a crane past this slope

Solution Back up 1.6 km from the next station

Installation Day 1

Installation End of Day 2

Installation End of Day 4

3 Months Later

11 Months later

- Total Roofing Project Size: 30,000 sq ft
- Green roof project size: 9,950 sq ft
- Installation time:
 - Re-roofing: 2 months
 - Green Roof: 5 days including stone & irrigation

• Plant Mix:

- Sedum acre 'Aureum'
- Sedum album 'Coral Carpet'
- Sedum floriferum 'Weihenstephaner Gold'
- Sedum hybridum 'Immergrunchen'
- Sedum reflexum
- Sedum rupestre 'Angelina'
- Sedum sexangulare
- Sedum spurium 'Dragon's Blood'
- Sedum spurium 'Voodoo'

Toronto Public Service Building

Victoria Park Station

Sloped Green Roofs

- North London Community Centre
 - New building in London, ON suburbs
 - Combination pool, library, community centre
 - First community green roof in London
 - Green roof visible from road
- Other sloped green roofs
 - JKLA, Buffalo, NY
 - 1 Haworth Circle, Holland, MI
 - Vancouver Convention Centre, BC
- Green Roof Design considerations
 - Brand new building
 - TPO 60 mil fully adhered roofing
 - Green roof with 22 degree slope
 - Curbs integrated into structure
 - Non-irrigated
 - Root barrier
 - **TPO**
 - Heat welded at seams

Green roof in production

The roof to be greened Slope: 22 degrees

A day later

Two Months later

JKLA Studio

Fully adhered EPDM

The blank canvas

JKLA Studio

Suspending the drainage layer

Installing the layers

Images courtesy of Joy Kuebler

JKLA Studio

Planting the roof

First summer

Images courtesy of Joy Kuebler

1 Haworth Circle

Publicly Accessible Green Roofs

- Podium Green Roof Nathan Phillips Square
 - Part of Toronto City Hall Complex
 - Publicly accessible sunrise to sunset
 - 3rd floor of City Hall
 - Visible from all buildings around
- Other accessible green roofs
 - Hamilton City Hall, Hamilton, ON
 - St Ignatius of Loyola School Guelph

Publicly Accessible Green Roofs

City of Toronto

- City Hall Podium
 - Existing building opened in 1965
 - Second roof replacement
 - Entirely closed to the public since mid-90's
 - First phase of revitalisation project

Toronto's main gathering place

Hamilton City Hall

St Ignatius High School, Guelph, ON

Summary

- Careful specification is important
- Ensure good drainage of
 - The roof
 - The green roof system
 - The growing medium
- Ensure water availability on the roof
- Design for durability, instead of cost
- Make proper plant selections
- Keep the aesthetics of the green roof in context
- Ensure everything is installed according to specification

Summary

• Remember:

It is all about the plants

Green roofs perform because of healthy plants

What should be in you library?

- Guideline for the planning, execution and upkeep of Green-roof sites. Release 2008 <u>www.FLL.DE</u>
- The Green Roof Manual: A professional guide to the Design, Installation and Maintenance.
 <u>www.Timberpress.com</u>
- Green Roof Plants: A resource and planting guide.
 <u>www.Timberpress.com</u>

Extensive Vegetated Roofs

Improving the environment one roof at a time

Contact Information

Kees Govers LiveRoof Ontario Inc 23078 Adelaide Rd Mount Brydges, ON NOL 1R0 Canada (519) 245-4039 kees@liveroofontario.co www.LiveRoof.ca