

Green Roofs and Walls

Presentation to Landscape Ontario Congress January 12, 2012

> Jordan Richie, GRP Green Roofs for Healthy Cities

Green Roofs

Millenium Village, Vancouver 2011 Award of Excellence Winner (Intensive Residential)

Green Walls

Phoenix Convention Center 2011 Award of Excellence Winner (Green Wall Design)

About Green Roofs for Healthy Cities (GRHC)

Big Sur Residential Source: Fred Ballerini 2009 Award of Excellence Winner (Extensive Residential) Member-based non-profit industry association established in 1999.

Mission:

To increase the awareness of the economic, social and environmental benefits of living architecture through education, advocacy, professional development and celebrations of excellence.

About GRHC – Education

Green Roof Professional (GRP) training and accreditation program. Specialized half-day workshops. Online learning via the Living Architecture Academy.

Training at Landscape Ontario Congress

Advanced Green Roof Maintenance 1:30 pm – 4:30 pm

Green Walls 101: Systems Overview and Design 1:30 pm – 4:30 pm

These courses are in the approval process for Landscape Industry Certified Continuing Education Credits.

Upcoming GRP Training in Ontario

- GRP Training Program Ottawa Algonquin College
 - Evening sessions every Wednesday from February 8 to March 28
- Toronto Green Roof Boot Camp (all four GRP courses on consecutive days)
 - February 23rd to 26th at Ryerson University and Carrot Common

Register at www.greenroofs.org/education

About GRHC – GRP Accreditation

Green Roof Professional (GRP) Accreditation Program

Industry-driven, exam-based certification. Launched in June of 2009. Now over 400 GRPs in the marketplace.

- Enables professionals to differentiate themselves in the marketplace
- Improves multi-disciplinary collaboration
- Increases customer confidence in green roof technology
- Results in better green roof design and installation practices
- Protects the industry from the inevitable failures that result from inappropriate design, installation and maintenance practices

About GRHC – GRP Accreditation

About GRHC – Communications

Web site: www.greenroofs.org

- Contains resources and tools like the GreenSave Calculator, Green Roofs Tree of Knowledge, and Living Architecture Toolbox
- Connect with GRPs and our members: designers, product manufacturers, and service providers
- Annual industry survey
- Quarterly Living Architecture Monitor magazine
- Awards of Excellence program
 - Recognizes outstanding North American green roof and wall projects
- Green Infrastructure Webinar Series

Living Architecture Monitor magazine. Published quarterly.

About GRHC – Conferences & Symposia

- Policy, Design & Case Studies, and Research tracks
- Trade show
- GRP and specialized half-day training courses
- Awards of Excellence ceremony
- Local green roof and wall tours

Schwab Rehabiliation Hospital. Chicago, IL.

About GRHC - Membership

Three types of membership:

Corporate Membership

Green roof and wall product manufacturers, suppliers, or service providers.

Individual Membership

Individuals practicing the art of living architecture.

Supporter Membership

 Individuals with a personal or professional interest in living architecture who wish to subscribe to the *Living Architecture Monitor* magazine.

About GRHC - Membership

GRHC Individual Membership by Profession

Green Roof Industry Growth

Industry Growth

Top Ten Green Roofs Cities – 2010

Metropolitan Area	State/Prov	<u>Total Installed (SF)</u>	<u># Projects</u>
Chicago	IL.	539,171	59
Toronto	ON	439,892	59
Washington	DC	410,245	46
New York	NY	233,333	58
Ottawa	ON	230,686	10
Vancouver	BC	224,550	4
Philadelphia	PA	147,592	24
Norfolk	VA	132,869	9
Milwaukee	WI	130,132	14
Baltimore	MD	90,079	14

Green Roofs

A green roof is a 'contained' green space on top of a humanmade structure below, above, or at grade.

> Howard Hughes Medical Institute Chevy Chase, MD Source: Sika Sarnafil

Overview of Green Roofs - History

- 600 BC: Ziggurats of Ancient Mesopotamia
- 800-1000 AD: Vikings

Hanging Gardens of Babylon Mesopotamia

> Sod Roof Restored Viking Settlement L'ance aux Meadows, Newfoundland Source: Steven W. Peck

Overview of Green Roofs - History

Residential Development Germany Source: Steven W. Peck Daimler-Chrysler Building Berlin, Germany Source: Steven W. Peck

Green Roof Components

Basic Green Roof Assembly

Green Roof Overview - Categories

CHARACTERISTIC	EXTENSIVE	SEMI-INTENSIVE	INTENSIVE
Growing Medium Depth	6" or less	25% above or below 6"	More than 6"
Accessibility	Often inaccessible	May be partially accessible	Usually accessible
Fully Saturated Weight	Low 10-35 lb / ft ² (48.8 - 170.9 kg / m ²)	Varies 35-50 lb / ft ² (170.9 – 244.1 kg / m ²)	High 50-300 lb / ft ² (244.1 – 1,464.7 kg / m ²)
Plant diversity	Low	Greater	Greatest
Cost	Low	Varies	High
Maintenance	Minimal	Varies	Varies, but is generally high

EXTENSIVE	SEMI-INTENSIVE	INTENSIVE
Lightweight	Combines best features of extensive and intensive	Greater diversity of plants
Suitable for large areas	Utilizes areas with greater loading capacity	Best insulation properties and storm water management
Low maintenance costs and may be designed for no irrigation	Greater coverage at less cost than intensive	Greater range of design
More suitable for retrofit projects	Average maintenance	Usually accessible
Lower capital costs	Greater plant diversity than extensive	Greater variety of human uses
Easier to replace	Greater opportunities for aesthetic design than extensive	Greater biodiversity potential

Green Roof Systems

Modular Systems

Source: Eco-Roofs

Source: Green Roof Blocks

Green Roof Systems

Loose Laid Systems

Source: Stancils

Source: Rooflite

Source: American Landscape

Green Roof Growing Media

Growing medium is made up of four components:

- Inorganic material (a.k.a. aggregate)
 - Vermiculite, expanded slate, clay, volcanic rock, coarse sands, pumice stone, scoria, zeolite, diatomaceous earth, perlite, crushed roofing tile, and rock wool.
- Organic material
 - Straw, saw dust, wood, grass, leaves, clippings, agricultural waste, worm castings, peat or peat moss, and manures.
 Bio-solids and Animal carcasses can be used but must be done exercising caution.
- Water
- Air

Green Roof Growing Media

J.C. Raulston Arboretum Raleigh, NC Source: Chuck Friedrich, Carolina Stalite

Green Roof Growing Media

Properties of Green Roof Growing Media

- Minimal contribution to weight load
- Retention of nutrients/moisture
- Offer a high void (air volume) ratio even when saturated
- Sufficiently porous for internal aeration
- Ability to prevent rotational movement, shrinkage, and compaction
- Resistant to heat and rot
- An ability to anchor plants
- Readily drainable
- Free of material which may degrade, clog, or corrode drainage or waterproofing system

Green Roof Vegetation

Commonly used plant categories for green roofs include:

- Succulent plants
- Grasses
- Herbaceous plants
- Woody plants

Green Roof Vegetation

Woodlands Assisted Living New Westminster, BC Source: Nat's Nursery

4287 Kingsway Vancouver, BC Source: Steven W. Peck

Chicago City Hall Chicago, Il Source: City of Chicago

Green Roof Vegetation - Sedums

Delosperma nubigenum 'Basutoland'

Sedum album

Sedum reflexum

Sedum spurium 'John Creech'

Source: Ed Snodgrass, Emory Knoll Farms

Green Walls

'Green wall' is an all-encompassing term used to refer to various forms of vegetated vertical surfaces.

Green Façades

Living Walls

Source: Elevated Landscape Technologies

Source: Jakob

Green Walls – Green Façades

Source: greenscreen

A '**Green Façade**' or façade greening, features a training structure that support vines or climbing plants growing upward from the ground away from the building.

Source: Jakob

Green Walls – Living Walls

Source: Randy Sharp

Source: Green Living Technologies

A 'Living Wall' is part of a building envelope system, comprising prevegetated or planted on site panels with plants, growing medium or liquid nutrient installed in or on a frame, secured to a structural wall or free standing.

Green Walls – Living Walls

Urban Food Chain. Green Living Technologies.

Green Roof Overview – Public Benefits

Green roof benefits that can accrue to the public include:

- Stormwater Management
- Urban Heat Island Mitigation
- Improved Air Quality
- Aesthetics
- Waste Diversion
- Improved Liveability
- Green Job Creation Design, Mfg, Installation and Maintenance

Green Roof Overview – Stormwater Management

Source: US Environmental Protection Agency

Green Roof Overview – Stormwater Management

10th @ Hoyt Apartments
Portland, OR
Award of Excellence 2006
Source: Koch Landscape Architecture

Benefits – Urban Heat Island Mitigation

Toronto, ON

The urban heat island (UHI) effect is the temperature increase in urban areas associated with the replacement of "natural vegetation with pavements, buildings, and other structures necessary to accommodate growing populations" (Wong 2005).

Source: Remote Sensing Advanced Technology

Benefits – Urban Heat Island Mitigation

Causes of Urban Heat Islands

- Replacement of the vegetated landscape with urban structures and materials
 - Properties of urban materials, different thermophysical characteristics
 - Geometry of the Urban Form
- Anthropogenic Heat

Benefits – Additional Public Benefits

Additional public benefits of green roofs include:

- Creation of Amenity Spaces
- Local Job Creation
- Waste Diversion
- Aesthetic Appeal

Green Roofs – Private Benefits

Building-scale benefits that accrue to building owners or occupants include:

- Energy Efficiency
- Increased Membrane Durability
- Noise Reduction
- Increased property values and marketability

Private Benefits – Energy Efficiency

Source: Stuart Gaffin, Center for Climate Systems Research, Columbia University.

Private Benefits – Air Quality Improvement

Typical sunny day temperatures on roof surfaces:

- Asphalt Roof: 158°F/ 70°C
- White PVC: 101°F/ 38 °C
- Green Roof: 90°F/ 32 °C

Private Benefits – Energy Efficiency

Source: National Research Council, Institute for Research in Construction

Private Benefits – Increased Membrane Durability

- North American roofs have an average lifespan of 10-15 years
 - Average across climates and membrane types
- Waterproofing membranes in green roof assemblies have lasted over 40 years in Germany

Private Benefits – Increased Membrane Durability

Source: National Research Council, Institute for Research in Construction

Private Benefits – Noise Reduction

GAP Headquarters San Bruno, CA Award of Excellence 2003 Source: William McDonough + Partners

Private Benefits – Marketability

Green buildings have been identified as facilitating:

- Sales
- Lease outs
- Increased property value due to increase efficiency
- Easier employee recruiting
- Lower employee turnover

Private Benefits – Marketability – LEED Certification

Through the process of integrated building design, green roofs may earn LEED® direct credits for:

- Storm water retention
- Reducing heat island effects
- Energy efficiency
- Water use efficiency

Solaire Building Battery Park City, NY Award of Excellence 2004 Source: Simon Bird

Private Benefits – Marketability

Exhibition Place Toronto, ON *Source: Melinda Zytaruk*

> Old Country Market Coombs, BC Source: Steven W. Peck

Project-Specific Benefits

Additional project specific-benefits of green roofs:

- PV Integration
- Increased Biodiversity
- Improved Health and Well-Being
- Urban Agriculture

Earth Pledge Green Roof New York, NY Source: Earth Pledge

Barriers to Implementation

Barrier to green roof implementation:

- Higher upfront costs
- Many of the benefits accrue to the public at large, not directly to building owners
- Lack of familiarity with the technology
- Lack of long-term performance data

Barriers to Implementation

There are four ways in which this technology can be made more affordable:

- Public incentives at municipal, state/provincial, or federal levels
- Product development and technological innovation
- Integration of green roofs with other building systems or programs
- Market expansion through improved delivery and training

Public Policies and Incentives

Toronto Eco-Roof Incentive Program

- Green roof incentive program
 introduced in 2006
- Installations on existing commercial, industrial or institutional buildings are eligible
- \$50/m² up to \$100,000
- To date program has supplied over \$700,000 in funding

Toronto City Hall.

Public Policies and Incentives

Toronto Green Roof Bylaw

Toronto City Hall.

Gross Floor Area (Size of Building)	Green Roof Coverage Requirement
2,000 – 4,999 m ²	20%
5,000-9,999 m ²	30%
10,000-14,999 m ²	40%
15,000-19,999 m ²	50%
20,000 m ² or greater	60%

Public Policies and Incentives

Toronto Green Roof Bylaw

- 103 green roofs required under bylaw as of August 2011 (105,000 sq. metres)
- 38 voluntary roof in same period (20,000 sq. metres)
- Prior to bylaw there were estimated to be 133 green roofs (36,517 sq. metres)

Standards Development

Standards and Guidelines:

- 1995: FLL Green Roof Guidelines (Germany)
- 2002: FLL Green Roof Guidelines revised (Germany)
- 2005: Publication of 5 ASTM Standards (Appendix V)
- 2006: Publication of 1 ASTM Guideline
- 2006: FM Global 1-35
- 2010: ANSI/SPRI VF-1 Fire Design Guidelines
- 2010: ANSI/SPRI RP-14 Wind Design Standard
- 2009: City of Toronto Green Roof Construction Standard.

Standards Development

Copyright by SPRI 2010 411 Waverley Oaks Road Suite 331 Weithern, MA 02452 www.april.org. All Rights Reserved

Disolalmer This standard is for use by architects, engineers, roofing contractors and owners of low aloge roofing systems. SPR0, its members and employees do not warrant that this standard is proper and applicable under all conditions.

ANSI/SPRI RP-14 Wind Design Standard for Vegetative Roofing Systems

This standard was developed in cooperation with Green Roofs for Healthy Cities.

Approved 6/3/2010

Table of Contents

1.0	Introduction
2.0	Definitions
3.0	General Design Considerations and System Requirements 5
4.0	Design Options
6.0	Design Provisions
8.0	Determination of Vegetative System Roof Design 11
7.0	Maintenance
Attao	hment I: 8PRI Test RE-1
	nentary to SPRI RP-14
	Introduction
	Definitions
C3.0	General Design Considerations and System Requirements 30
C4.0	Design Options
C6.0	Design Provisions
C8.0	Determination of Ballacted System Roof Design
C7.0	Maintenance
Refer	anoas

Copyright by SPRI 2010 411 Wwweley Oaks Road Suite 331 Weithem, MA 02452 www.spril.org. Al Rights Reserved

Disolalmer

This standard is for use by architects, engineers, roofing contractors and owners of low slope roofing systems. SPRI, its members and employees do not warrant that this standard is proper and applicable under all conditions.

Projects – Vancouver Convention Centre

Vancouver Convention Centre Expansion Project, Vancouver, BC. 2010 Award of Excellence Winner. PWL Partnership Landscape Architects Inc.

Projects – Vancouver Convention Centre

Projects – Vancouver Convention Centre

Photo credit: PWL Partnership Landscape Architects

Projects – Minneapolis Target Center

Target Center, Minneapolis, MN.

2010 Award of Excellence Winner. The Kestrel Design Group, Inc., and Sika Sarnafil.

Photo courtesy: Sika Sarnafil and Bergerson Photography.

Projects – Minneapolis Target Center

Photo credit: The Kestrel Design Group, Inc.

Projects – California Academy of Sciences

California Academy of Sciences, San Francisco, CA. 2008 Award of Excellence Winner. Rana Creek Living Architecture.

Projects – California Academy of Sciences

Projects – California Academy of Sciences

Projects – Brooklyn Grange

Projects – Brooklyn Grange

Integrated Design

Mountain Equipment Co-op Retail Store Winnipeg, MB Source: Richard Kula

Integrated Design

EPA Region 8 Headquarters. Denver, CO.

Final Thoughts

Vancouver Public Library. Cornelia Oberlander.

Upcoming GRHC Training in Ontario

- Advanced Green Roof Maintenance (today!)
- Green Walls 101: Systems Overview and Design (today!)
- GRP Training Program Ottawa Algonquin College evening sessions every Wednesday from February 8 to March 28
- Toronto Green Roof Boot Camp (all four GRP courses on consecutive days) – Feb 23rd to 26th

Register at www.greenroofs.org/education

Living Architecture

"We look at architecture the wrong way: sideways, so what we see is only a thin sliver of the reality around us."

"To see architecture fully, you must tip it up, stand it on its edge. When you do, you always see dead land on display."

Malcolm Wells, Rediscovering America